Detoxification in Relation to Toxin Tolerance in Desert Woodrats Eating
نویسندگان
چکیده
We studied the relationship between the use of three detoxification pathways and urine pH and the tolerance of desert woodrats from two populations to a mixture of naturally occurring plant secondary metabolites (mostly phenolics) in resin from creosote bush (Larrea tridentata). The two populations of desert woodrats came from the Mojave desert (Mojave woodrats), where woodrats consume creosote bush, and from the Great Basin desert (Great Basin woodrats), where the plant species is absent.We fedwoodrats alfalfa pellets containing increasing levels of the phenolic resin and measured three detoxification pathways and urine pH that are related to detoxification of allelochemicals. We found that the excretion rate of two phase II detoxification conjugates, glucuronides and sulfides, increasedwith increasing resin intake, whereas excretion of hippuric acid was independent of resin intake, although it differed between populations. Urine pH declined with increasing resin ingestion. The molar proportion of glucuronides in urine was three times that of the other conjugates combined. Based on an evaluation of variation in the three detoxification pathways and urine pH in relation to resin intake, we rejected the hypotheses that woodrats’ tolerance to resin intake is related to capacity for amination, sulfation, or pH regulation. However, Mojave woodrats had higher maximum glucuronide excretion rates, and we accepted the hypothesis that within and between populations woodrats tolerate more resin because they have a greater capacity for glucuronide excretion. ¤To whom correspondence should be addressed. E-mail: [email protected]
منابع مشابه
Cytochrome P450 2B Diversity and Dietary Novelty in the Herbivorous, Desert Woodrat (Neotoma lepida)
Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compo...
متن کاملExpression of biotransformation genes in woodrat (Neotoma) herbivores on novel and ancestral diets: identification of candidate genes responsible for dietary shifts.
The ability of herbivores to switch diets is thought to be governed by biotransformation enzymes. To identify potential biotransformation enzymes, we conducted a large-scale study on the expression of biotransformation enzymes in herbivorous woodrats (Neotoma lepida). We compared gene expression in a woodrat population from the Great Basin that feeds on the ancestral diet of juniper to one from...
متن کاملAmbient temperature influences tolerance to plant secondary compounds in a mammalian herbivore.
Growing evidence suggests that plant secondary compounds (PSCs) ingested by mammals become more toxic at elevated ambient temperatures, a phenomenon known as temperature-dependent toxicity. We investigated temperature-dependent toxicity in the desert woodrat (Neotoma lepida), a herbivorous rodent that naturally encounters PSCs in creosote bush (Larrea tridentata), which is a major component of ...
متن کاملA specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than does a generalist (Neotoma albigula).
Detoxification capacity of enzymes in the liver is thought to be the primary factor governing dietary toxin intake by mammalian herbivores. Recently, toxin absorption in the gut was proposed as an alternative process that also influences toxin intake. We examined the role of the gut in regulating toxin absorption by quantifying excretion of a plant secondary compound in the feces. We hypothesiz...
متن کاملPlant Animal Interactions
Mammalian herbivores are predicted to regulate concentrations of ingested plant secondary metabolites (PSMs) in the blood by modifying the size and frequency of feeding bouts. It is theorized that meal size is limited by a maximum tolerable concentration of PSMs in the blood, such that meal size is predicted to decrease as PSM concentration increases. We investigated the relationship between PS...
متن کامل